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Energy of a graph

Let G be a finite, simple, undirected graph with n number of
vertices and m number of edges.

Vertex set V (G ) = {v1, v2, . . . , vn}.

Edge set E (G ) = {e1, e2, . . . , em}.

Adjacency matrix of G is an n×n matrix A(G ) = [aij ], in which
aij = 1 if the vertex vi is adjacent to the vertex vj and aij = 0,
otherwise.
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Characteristic plynomial of G is φ(G : λ) = det(λI − A(G )).

Eigenvalues of A(G ), denoted by λ1, λ2, . . . , λn are called the
eigenvalues of G and their collcetion is called the spectrum of
G .

If λ1, λ2, . . . , λk are the distinct eigenvalues of G with
respective multiplicities m1,m2, . . . ,mk , then

Spec(G ) =

(
λ1 λ2 . . . λk
m1 m2 . . . mk

)
.
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Energy of a graph

The energy of a graph is defined as the sum of the absolute
values of the eigenavlues the adjacency matrix of a graph.
That is,

E(G ) =
n∑

i=1

|λi |.

In the matahematical literature, this quantity was putforward in
1978 by Ivan Gutman, but its chemical roots go back to 1930s.

H. S. Ramane Energy of Graphs



Energy of a graph

��
��

HH
H
H

HH
HH

��
��

u
u

u
u
uu

v1

v2

v3

v4

v5

v6

φ(G : λ) = λ6 − 9λ4 − 4λ3 + 12λ2

Spec(G ) =

(
3 1 0 −2
1 1 2 2

)
E(G ) = 8
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φ(Kn : λ) = (λ− n + 1)(λ+ 1)n−1

Spec(Kn) =

(
n − 1 −1

1 n − 1

)
E(Kn) = 2(n − 1)

φ(Kp,q : λ) = λp+q−2(λ2 − pq)

Spec(Kp,q) =

( √
pq 0 −√pq
1 p + q − 2 1

)
E(Kp,q) = 2

√
pq

H. S. Ramane Energy of Graphs



Energy of a graph

E(Cn) =


4 cot

(
π
n

)
if n ≡ 0 (mod 4)

4cosec
(
π
n

)
if n ≡ 2 (mod 4)

2cosec
(
π
2n

)
if n ≡ 1 (mod 2)

E(Pn) =


2cosec

(
π

2(n+1)

)
− 2 if n ≡ 0 (mod 2)

2 cot
(

π
2(n+1)

)
− 2 if n ≡ 1 (mod 2)
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One of the remarkable chemical applications of spectral graph theory
is based on the close correspondence between the graph eigenvalues
and the molecular orbital energy levels of π-electrons in conjugated
hydrocarbons.
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Hückel Molecular Orbital Theory

In 1930s, German Scholar Erich Hückel made certain simplifi-
cation of Schrodinger wave equation.

The wave functions ψ are the solutions of Schrodinger wave
equation (H −E )ψ = 0, where H is the energy operator and E
is the electron energy.

Hückel replaced the Schrodinger wave function by the secular equa-
tion

det(H − ES) = 0

where H = αI + βA and S = I + σA.

Here α (the Coulomb integral for carbon atom), β (the resoannce
integral for two carbon atoms) and σ are all constants.
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In the ground state, that is when α = 0 and β = 1, H becomes the
adjacency matrix A(G ) of the associated graph G .

The spectra of graphs can be used to calculate the energy levels of
conjugated hydorcarbons as calcultaed with the Hückel Molecular
Orbital method.
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Figure 2: Butadiene C4H6 and its molecular graph.

H =


α β 0 0
β α β 0
0 β α β
0 0 β α

 = αI + βA
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As a consequences of above equation, the energy levels εi of the
π-electrons are related to the eigenvalues λi of the graph by the
equation

εi = α + βλi , i = 1, 2, . . . n.

In the HMO approximation the total energy of the π-electrons is

Eπ =
n∑

i=1

giεi

where gi the count of π-electrons with energy εi , called occupation
number. Therefore

Eπ = nα + β

n∑
i=1

giλi .
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The total number of π-electrons is equal to the number of vertices
of the associated molecular graph.

For majority of conjugated hydorcarbons, gi = 2 if λi > 0 and
gi = 0 if λi < 0. Therfore

Eπ = nα + 2β
∑
+

λi

= nα + β

n∑
i=1

|λi |.

Because n, α and β are constants, the only nontrivial term is
n∑

i=1
|λi |.
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Hence the graph energy is [Gutman (1978)]

E(G ) =
n∑

i=1

|λi |.
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Coulson integral formula [Coulson (1940)]:

E(G ) =
1

π

∫ ∞
−∞

[
n − iλφ′(G : iλ)

φ(G : iλ)

]
dλ

where i =
√
−1 and φ′(G : λ) is the first derivative of φ(G : λ).
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Proof: Let φ(G : λ) be the polynomial of dgeree n in the complex
variable z , and let λ1, λ2, . . . , λn be its zeros. Then

φ(G : z) =
n∏

j=1

(z − λj)

and consequently

φ′(G : z)

φ(G : z)
=

n∑
j=1

1

z − λj
.
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Therefore

zφ′(G : z)

φ(G : z)
=

n∑
j=1

z

z − λj

=
n∑

j=1

(
1 +

λj
z − λj

)

= n +
n∑

j=1

λj
z − λj

.
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Therefore

zφ′(G : z)

φ(G : z)
− n =

n∑
j=1

λj
z − λj

.

And [
zφ′(G : z)

φ(G : z)
− n

]
−→ 0 as |z | −→ ∞.
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Consider the contour Γ+ shown in the Fig. 4.

Figure 4: Positively oriented contour Γ+ in the the complex plane.
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According to the well known Cauchy formula

1

2πi

∮
Γ+

dz

z − z0
=

{
1 if z0 ∈ int(Γ+)
0 if z0 ∈ ext(Γ+).

Therefore

1

2πi

∮
Γ+

[
zφ′(G : z)

φ(G : z)
− n

]
dz =

1

2πi

∮
Γ+

n∑
j=1

λj
z − λj

dz

=
n∑

j=1

λj
2πi

∮
Γ+

dz

z − λj

=
∑
+

λj =
E(G )

2
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In the limiting case when Γ+ becomes infinitely large, the only non-
vanishing contribution to the above integral comes from the inter-
gration along the y -axis.
Thus

E(G ) =
1

πi

∮
Γ+

[
zφ′(G : z)

φ(G : z)
− n

]
dz

=
1

πi

∫ ∞
−∞

[
zφ′(G : z)

φ(G : z)
− n

]
dz +

1

πi

∫ −∞
∞

[
zφ′(G : z)

φ(G : z)
− n

]
dz

= 0 +
1

πi

∫ −∞
∞

[
iyφ′(G : iy)

φ(G : iy)
− n

]
d(iy)

=
1

π

∫ ∞
−∞

[
n − iyφ′(G : iy)

φ(G : iy)

]
dy

=
1

π

∫ ∞
−∞

[
n − iλφ′(G : iλ)

φ(G : iλ)

]
dλ.
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Bounds for energy

Theorem (McClelland 1971)

For an (n,m)-graph G ,√
2m + n(n − 1)| detA|2/n ≤ E(G ) ≤

√
2mn.
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Proof: Lower bound
Since the GM of positive numbers is not greater than their AM,

1

n(n − 1)

∑
i 6=j

|λi ||λj | ≥

∏
i 6=j

|λi ||λj |

 1
n(n−1)

=

(
n∏

i=1

|λi |2(n−1)
) 1

n(n−1)

=

(
n∏

i=1

|λi |

)2/n

= | detA|2/n.
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Therefore

(E(G ))2 =
n∑

i=1

λ2i +
∑
i 6=j

|λi ||λj |

≥ 2m + n(n − 1)| detA|2/n.

Therefore

E(G ) ≥
√

2m + n(n − 1)| detA|2/n.
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Upper bound
Cauchy-Schawrtz inequality(

n∑
i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
.

Let ai = 1 and bi = |λi |, i = 1, 2, . . . , n.

(
n∑

i=1

|λi |

)2

≤ n
n∑

i=1

|λi |2

(E(G ))2 ≤ n(2m)

E(G ) ≤
√

2mn.

Equality if and only if G = (n/2)K2.
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Theorem (Gutman 2001)

For any graph G with m edges, 2
√
m ≤ E(G ) ≤ 2m.

Proof:

(E(G ))2 =
n∑

i=1

λ2i + 2
∑

1≤i<j≤n
|λi ||λj |

≥ 2m + 2

∣∣∣∣∣∣
∑
i<j

λiλj

∣∣∣∣∣∣ = 2m + 2| −m| = 4m

E(G ) ≥ 2
√
m.

For all graphs, n ≤ 2m.
Therefore E(G ) ≤

√
2mn ≤

√
(2m)2 = 2m.
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Theorem (Koolen, Moulton 2001)

Let G be an (n,m)-graph. If 2m ≥ n, then

E(G ) ≤ 2m

n
+

√√√√(n − 1)

[
2m −

(
2m

n

)2
]
.
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Proof: Cauchy-Schawrtz inequality(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
.

Let ai = 1 and bi = |λi |, i = 2, 3, . . . , n.

(
n∑

i=2

|λi |

)2

≤ (n − 1)
n∑

i=2

|λi |2

(E(G )− λ1)2 ≤ (n − 1)(2m − λ21)

E(G ) ≤ λ1 +
√

(n − 1)(2m − λ21).
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Consider the function f (x) = x +
√

(n − 1)(2m − x2).

It is decreasing function of the variable x ∈ (2m/n,
√

2m) and
attains at x = 2m/n and λ1 ≥ 2m/n.

Therefore f (λ1) ≤ f (2m/n).

Hence

E(G ) ≤ 2m

n
+

√√√√(n − 1)

[
2m −

(
2m

n

)2
]
.
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Equality holds if and only if G = (n/2)K2 or G = Kn or G is strongly
regular graph with two nontrivial eigenvalues both having absolute
values equal to √√√√[2m − (2mn )2]

(n − 1)
.
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By immediate consequence of the above inequality it follows that:

Theorem (Koolen, Moulton 2001)

Let G be a graph on n vertices. Then

E(G ) ≤ n(
√
n + 1)

2
,

with equality if and only if G is strongly regular graph with
parameters (

n,
n +
√
n

2
,
n + 2

√
n

4
,
n + 2

√
n

4

)
.

Above equality holds only for n = 64, 256, 1024, 4096, . . ..
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Theorem (Zhou 2004)

If G is a graph with n vertices, m edges and vertex degree
sequence d1, d2, . . . dn, then

E(G ) ≤

√√√√1

n

n∑
i=1

d2
i +

√√√√(n − 1)

[
2m − 1

n

n∑
i=1

d2
i

]
,

with equality if and only if G is either (n/2)K2, Kn, strongly
regular graph with two nontrivial eigenvalues both with absolute
value

√
(2m − (2m/n)2)/(n − 1) or nK1.
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Theorem (Zhou and Ramane 2008)

Let G be a bipartite graph with n ≥ 2 vertices, m ≥ 1 edges, the
first Zagreb index M and an (n1, n2)-bipartition, where n1 ≤ n2. If
M ≤ nm

n1
, then

E(G ) ≤ 2

√
m

n1
+ 2

√
(n1 − 1)

(
m − m

n1

)
,

with equality if and only if G = n1K1,s ∪ (n − n1 − sn1)K1.
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Theorem (Zhou and Ramane 2008)

Let G be a bipartite graph with n ≥ 2 vertices, m ≥ 1 edges,and
an (n1, n2)-bipartition, where n1 ≤ n2. If m ≥ n2, then

E(G ) ≤ 2m
√
n1n2

+ 2

√
(n1 − 1)

(
m − m2

n1n2

)
.

H. S. Ramane Energy of Graphs



Energy of a graph

Let Sn = K1,n−1 be the star and Pn be the path on n vertices.

E(Sn) ≤ E(Tn) ≤ E(Pn)

Among all trees with n vertices, star has minimum energy and path
has maximum energy.
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Let T1(n) be obtained by joining a vertex to a terminal vertex of
Sn−1.
Let T2(n) be the tree obtained by joining two vertices to a
terminal vertex of Sn−2.
Let T3(n) be the tree obtained by joining a vertex of P2 to a
terminal vertex of Sn−2.
Let T4(n) be the tree obtained by joining a middle vertex of P5 to
the terminal vertex of Pn−5.

Figure: S9, T1(9), T2(9), T3(9), T4(9).

H. S. Ramane Energy of Graphs



Energy of a graph

Theorem (Gutman, 1977)
If T is any tree on n vertices different from Sn, T1(n), T2(n),
T3(n), T4(n) and Pn, then

E(Sn) < E(T1(n)) < E(T2(n)) < E(T3(n)) < E(T ) < E(T4(n)) < E(Pn).
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Figure: An(k) and Bn(k).

Theorem (Walikar and Ramane 2005)

Let An(k) and Bn(k) be the trees as shown above. Then for any
two integers n and k ,

E(An(1)) < E(An(2)) < · · · < E(An(b(n/2)− 1c))

E(Bn(1)) < E(Bn(2)) < · · · < E(Bn(b(n − 3)/2c)).

H. S. Ramane Energy of Graphs



Energy of a graph

Koolen-Moulton (2001) bound is

E(G ) ≤ 2m

n
+

√√√√(n − 1)

[
2m −

(
2m

n

)2
]
.

If G is an r -regular graph, then

E(G ) ≤ r +
√

r(n − 1)(n − r).

It is attained for the complete graph.
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Let

B2 = r +
√

r(n − 1)(n − r).

Balakrishnan (2004) showed that for ε > 0, there exist infinitely
many r -regular graphs G such that E(G )/B2 < ε and he posed the
following problem.

Problem (Balakrishnan 2004)

Given a positive integer n ≥ 3, does there exist an r -regular graph
G of order n, such that E(G )/B2 > 1− ε for some r < n − 1?
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An affirmative answer to this question is given by Walikar, Ramane,
Jog (2008) and by Li, Li, Shi (2010), not for general n but when
n ≡ 1( mod 4), n ≥ 5.

In both papers same example is considered, namely the Paley graph.

The Paley graph Gp is a strongly regular graph with parameters(
n,

n − 1

2
,
n − 5

4
,
n − 1

4

)
.

It is a regular graph of degree (n − 1)/2 and

Spec(Gp) =

 n−1
2

−1+
√
n

2
−1−

√
n

2

1 n−1
2

n−1
2

 .
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E(Gp) =
(n − 1)(

√
n + 1)

2
.

and

B2 = r +
√

r(n − 1)(n − r)

=
(n − 1)(1 +

√
n + 1)

2
.

Therefore

E(Gp)

B2
=

√
n + 1

1 +
√
n + 1

−→ 1 as n −→∞.

It follows that for any ε > 0 and some integer N, if n > N then

E(Gp)

B2
> 1− ε.
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Table: Ratio of E(Gp) to B2

n E(Gp) = (n−1)(
√
n+1)

2 B2 = (n−1)(1+
√
n+1)

2 E(Gp)/B2

5 6.472135955 6.8989794856 0.9381294681
101 552.4937811 554.9752469 0.9955286910

525065 190496813.3110102 190496994.46400146 0.9999990490
1011101 508853860.6970579 508854112.1 0.9999995059

102496524 518891553299.8796 518891555830.893789 0.9999999951
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Hyperenergetic graphs:

For molecular graphs McClelland showed that

E(G ) ≈ a
√

2mn

where a ≈ 0.9.

Among all graphs with n vertices, the complete graph Kn has
maximum edges equal to m = n(n − 1)/2.

With this observation, Gutman (1978) conjectured that, among
all graphs with n vertices, the complete graph has maximum
energy.

That is, if G is any graph with n vertices then

E(G ) ≤ E(Kn) = 2(n − 1).
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But this conjecture is not true.

Spectra =

(
5 2.2361 −2.2361 −1
1 3 3 5

)
E(G ) ≈ 23.4166 and E(K12) = 22.

H. S. Ramane Energy of Graphs



Energy of a graph

In 1999, Walikar, Ramane and Hampiholi proposed the first
systematic construction of infinite number of graphs for which
this conjecture does not hold.

Spec(Kn) =

(
n − 1 −1

1 n − 1

)

Spec(L(Kn)) =

(
2n − 4 n − 4 −2

1 n − 1 n(n − 3)/2

)
For n ≥ 5,

E(L(Kn)) = |2n−4|+|n−4|(n−1)+|−2|(n(n−3)/2) = 2n2−6n

E(Kn(n−1)/2) = 2

(
n(n − 1)

2
− 1

)
= n2 − n − 2

E(L(Kn)) > E(Kn(n−1)/2).

H. S. Ramane Energy of Graphs



Energy of a graph

There are several other examples for which this conjceture does
not hold. For instance:

(i) L(Kn), n ≥ 6.

(ii) L(Kp,p,) and L(Kp,p,), p ≥ 4.

(iii) A regular graph on n = 2k vertices and of degree 2k − 2 and
its complement, k > 3.
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A graph G is said to be hyperenergetic if

E(G ) > E(Kn) = 2(n − 1)
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The total graph of G , denoted by T (G ) is a graph with vertex set
V (G ∪ E (G ) and two vertices in T (G ) are adjacent if and only if
the corresponding elements of G are adjacent or incident in G .

Theorem

For any r -regular graph G of order n,
(i) L(G ) is hyperenergetic if r ≥ 4;
(ii) T (G ) is hyperenergetic if r ≥ 6;
where L(G ) is the line graph and T (G ) is the total graph of G .
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Proof:
(i) If λ1, λ2, . . . , λn are the eigenvalues of a regular graph G , then
the eigenvalues of L(G ) are λi + r − 2, i = 1, 2, . . . , n and −2
(m − n times).

E(L(G )) =
n∑

i=1

|λi + r − 2|+ | − 2|(m − n)

≥

∣∣∣∣∣
n∑

i=1

(λi + r − 2)

∣∣∣∣∣+ 2(m − n)

= n(r − 2) + 2(m − n) = 2m + n(r − 4)

The graph L(G ) is hyperenergetic if E(L(G )) > 2(m − 1).
That is if 2m + n(r − 4) > 2m − 2. It holds if r ≥ 4.
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(ii) If λ1, λ2, . . . , λn are the eigenvalues of a regular graph G , then
the eigenvalues of T (G ) are

1

2

(
2λi + r − 2±

√
4λi + r2 + 4

)
, i = 1, 2, . . . , n

and −2 (m − n times). Therefore

E(T (G )) =
n∑

i=1

∣∣∣∣12 (2λi + r − 2±
√

4λi + r2 + 4
)∣∣∣∣+ | − 2|(m − n)

≥

∣∣∣∣∣
n∑

i=1

1

2

(
2λi + r − 2±

√
4λi + r2 + 4

)∣∣∣∣∣+ 2(m − n)

= n(r − 2) + 2(m − n) = 2m + n(r − 4).

The order of T (G ) is m + n. Therefore T (G ) is hyperenergetic if
E(T (G )) > 2(m + n − 1). That is 2m + n(r − 4) > 2(m + n − 1).
It holds as r ≥ 6.
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Theorem (Hou, Gutman 2001)

If m ≥ 2n then L(G ) is hyperenergetic.

Proof: φ(L(G ) : λ) = (λ+ 2)m−n det[(λ+ 2)I − (D(G ) + A(G ))]
If µ1, µ2, . . . , µn are the eigenvalues of D(G ) + A(G ) then
eigenvalues of L(G ) are −2 (m − n times) and µi − 2,
i = 1, 2, . . . , n.

E(L(G )) = | − 2|(m − n) +
n∑

i=1

|µi − 2| ≥ 2(m − n) +
n∑

i=1

(|µi | − 2)

= 2(m − n) +
n∑

i=1

(µi − 2), since µi ≥ 0

= 2(m − n) + 2m − 2n = 4(m − n)

L(G ) is hyperenergetic if 4(m − n) > 2(m − 1).
That is if m > 2n − 1 then E(L(G )) > 2(m − 1).
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Let v be the vertex of a complete graph Kn, n ≥ 3 and let ei ,
i = 1, 2, . . . k , 1 ≤ k ≤ n − 1 be its distinct edges, all being
incident to v . The graph Kan(k) is obtained by deleting ei ,
i = 1, 2, . . . , k from Kn.

For n ≥ 3 and 0 ≤ k ≤ n − 1, the eigenvalues of Kan(k) are −1
(n − 3 times) and three roots x1, x2, x3 of the equation
x3 − (n− 3)x2 − (2n− k − 3)x + (k − 1)(n− 1− k) = 0, of which
two (say x1 and x2) are positive and one (say x3) is negative.
Therefore

E(Kan(k)) = n − 3 + |x1|+ |x2|+ |x3|
= n − 3 + x1 + x2 − x3.

Thus E(Kan(k)) > E(Kn) = 2(n − 1) if x1 + x2 − x3 > n + 1.
This is true for k = 2, n ≥ 10; k = 3, n ≥ 9; k = 4, n ≥ 9;
k = 5, n ≥ 10; k ≥ 6 and n ≥ k + 4.
This shows that there are hyperenergetic graphs on n vertices for
all n ≥ 9.
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Theorem (Walikar, Gutman, Hampiholi, Ramane 2001)

If m ≤ 2n − 2, then G is non-hyperenergetic.

Proof: Koolen-Moulton bound is

E(G ) ≤ 2m

n
+

√√√√(n − 1)

[
2m −

(
2m

n

)2
]
.

If

2m

n
+

√√√√(n − 1)

[
2m −

(
2m

n

)2
]
< 2(n − 1)

then G is non-hyperenergetic. This equation reduces to

[m − 2(n − 1)][m − (n(n − 1)/2)] > 0.

It is true for m > n(n − 1)/2 and m < 2(n − 1). The condition
m > n(n − 1)/2 is impossible. Therefore there remains
m < 2(n − 1). Hence the proof.
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Let G1 be (n1,m1)-graph such that m1 ≤ 2n1 − 2.
Let G2 be (n2,m2)-graph such that m2 ≤ 2n2 − 2.
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All graphs whose average vertex degree is less than 3.5 are
nonhyperenergetic.

No Hückel graph is hyperenergetic.

All 1, 2, 3 regular graphs are nonhyperenergeic.

All graphs whose blocks have average degree less than 3.5 are
nonhyperenergetic.

All trees are nonhyperenergetic.

All graphs in which every edge belongs to atmost one cycle
(cactii) are nonhyperenergetic.
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